Chapter 3. Metals and Non-metals

3.5. Corrosion

  • You have learnt the following about corrosion in Chapter 1 –
    Silver articles become black after some time when exposed to air. This is because it reacts with sulphur in the air to form a coating of silver sulphide.
  • Copper reacts with moist carbon dioxide in the air and slowly loses its shiny brown surface and gains a green coat. This green substance is basic copper carbonate.
  • Iron when exposed to moist air for a long time acquires a coating of a brown flaky substance called rust. Let us find out the conditions under which iron rusts.

Activity 3.14

  • Take three test tubes and place clean iron nails in each of them. Label these test tubes A, B and C. Pour some water in test tube A and cork it.
  • Pour boiled distilled water in test tube B, add about 1 mL of oil and cork it. The oil will float on water and prevent the air from dissolving in the water.
  • Put some anhydrous calcium chloride in test tube C and cork it. Anhydrous calcium chloride will absorb the moisture, if any, from the air. Leave these test tubes for a few days and then observe (Fig. 3.13).

You will observe that iron nails rust in test tube A, but they do not rust in test tubes B and C. In the test tube A, the nails are exposed to both air and water. In the test tube B, the nails are exposed to only water, and the nails in test tube C are exposed to dry air. What does this tell us about the conditions under which iron articles rust?

3.5.1 Prevention of Corrosion

The rusting of iron can be prevented by painting, oiling, greasing, galvanising, chrome plating, anodising or making alloys.

Galvanisation is a method of protecting steel and iron from rusting by coating them with a thin layer of zinc. The galvanised article is protected against rusting even if the zinc coating is broken. Can you reason this out?

Alloying is a very good method of improving the properties of a metal. We can get the desired properties by this method. For example, iron is the most widely used metal. But it is never used in its pure state. This is because pure iron is very soft and stretches easily when hot. But, if it is mixed with a small amount of carbon (about 0.05 %), it becomes hard and strong. When iron is mixed with nickel and chromium, we get stainless steel, which is hard and does not rust. Thus, if iron is mixed with some other substance, its properties change. In fact, the properties of any metal can be changed if it is mixed with some other substance.
The substance added may be a metal or a non-metal. An alloy is a homogeneous mixture of two or more metals, or a metal and a nonmetal. It is prepared by first melting the primary metal, and then, dissolving the other elements in it in definite proportions. It is then cooled to room temperature.

Do You Know?

Pure gold, known as 24 carat gold, is very soft. It is, therefore, not suitable for making jewellery. It is alloyed with either silver or copper to make it hard. Generally, in India, 22 carat gold is used for making ornaments. It means that 22 parts of pure gold is alloyed with 2 parts of either copper or silver.

If one of the metals is mercury, then the alloy is known as an amalgam. The electrical conductivity and melting point of an alloy is less than that of pure metals. For example, brass, an alloy of copper and zinc (Cu and Zn), and bronze, an alloy of copper and tin (Cu and Sn), are not good conductors of electricity whereas copper is used for making electrical circuits. Solder, an alloy of lead and tin (Pb and Sn), has a low melting point and is used for welding electrical wires together.

More to Know!

The wonder of ancient Indian metallurgy
The iron pillar near the Qutub Minar in Delhi was built more than 1600 years ago by the iron workers of India. They had developed a process which prevented iron from rusting. For its quality of rust resistance it has been examined by scientists from all parts of the world. The iron pillar is 8 m high and weighs 6 tonnes (6000 kg).

Questions

1. Metallic oxides of zinc, magnesium and copper were heated with the following metals.

In which cases will you find displacement reactions taking place?
2. Which metals do not corrode easily?

3. What are alloys?

What You Have Learnt!

  • Elements can be classified as metals and non-metals.
  • Metals are lustrous, malleable, ductile and are good conductors of heat and electricity. They are solids at room temperature, except mercury which is a liquid.
  • Metals can form positive ions by losing electrons to non-metals.
  • Metals combine with oxygen to form basic oxides. Aluminium oxide and zinc oxide show the properties of both basic as well as acidic oxides. These oxides are known as amphoteric oxides.
  • Different metals have different reactivities with water and dilute acids.
  • A list of common metals arranged in order of their decreasing reactivity is known as an activity series.
  • Metals above hydrogen in the Activity series can displace hydrogen from dilute acids.
  • A more reactive metal displaces a less reactive metal from its salt solution.
  • Metals occur in nature as free elements or in the form of their compounds.
  • The extraction of metals from their ores and then refining them for use is known as metallurgy.
  • An alloy is a homogeneous mixture of two or more metals, or a metal and a non-metal.
  • The surface of some metals, such as iron, is corroded when they are exposed to moist air for a long period of time. This phenomenon is known as corrosion.
  • Non-metals have properties opposite to that of metals. They are neither malleable nor ductile. They are bad conductors of heat and electricity, except for graphite, which conducts electricity.
  • Non-metals form negatively charged ions by gaining electrons when reacting with metals.
  • Non-metals form oxides which are either acidic or neutral.
  • Non-metals do not displace hydrogen from dilute acids. They react with hydrogen to form hydrides.

Các bài toán cùng chủ đề!

Các sách luyện thi do Trung tâm phát hành!


error: Content is protected !!
Menu